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We report on theoretical results concerning the relation between the liquid-liquid transition and the density
anomaly for a family of ramp potentials �hard-core plus linear short range repulsion and linear long range
attraction�. Using first order perturbation, we have studied the influence of the range of the attractive interac-
tions, taking the repulsive part of the interaction as the reference system. Two different mechanisms of
liquid-liquid coexistence have been predicted: attraction and compression. The attractive case is attributed to
long ranged potentials, while the second one is obtained when the interaction is shortened. The density
anomaly appears linked to regions where the temperature derivative of the density derivative of the energy is
bigger �in absolute value� than a limit. This condition is fulfilled when the range of the attractive part of the
potential is short enough.
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I. INTRODUCTION

It is generally accepted that liquid-liquid transitions are
obtained in systems with two typical length scales in the
interaction potential, supplemented by long-range attractive
interactions �1�. These distances may arise due to
orientation-dependent interactions, as for many atomic and
molecular systems �2–7�, or in spherically symmetric poten-
tials �8–10�. Among the former, the paradigmatic example is
water �3,4�, not only because of its implications but also
because it has eluded rationalization of its many anomalies;
in particular, let us emphasize the density anomaly, i.e., the
density increases upon cooling for a range of temperature
and pressure. Different hypothesis have been developed
�11,12�, and although no compelling evidence for a liquid-
liquid transition in supercooled water has been reported yet,
there exist a variety of indirect experimental and theoretical
data favoring the proposition that this transition exists in
water and is the cause for the density anomaly �13–15�.

For spherically symmetric potentials showing liquid-
liquid separation, the core-softened or shoulder potentials in-
troduced by Hemmer and Stell �16� are the most widely used
examples, where the particle core exhibits a region of nega-
tive curvature or a step, in addition to a long range attraction.
In these cases, however, the density anomaly is not always
observed; see, e.g., Refs. �17–19� for nondifferentiable po-
tentials which do not show it, or Refs. �8,9,20� for ramp
potentials which indeed present density anomaly. In addition,
purely repulsive core-softened potentials show density
anomaly �as well as other thermodynamic and dynamic
anomalies� without direct evidence of liquid-liquid phase
separation, though there are indications that such a transition
may exist but is preempted by crystallization �as it is specu-
lated in the case of water� �21–24�. A rich scenario of crystal
phases has also been predicted for convex repulsive poten-
tials �25,26�.

The first work for ramp potentials �hard core plus a repul-
sive linear potential at short distances, and linear attraction
of longer range� studying the liquid-liquid coexistence ac-
companied by density anomaly was reported by Jagla �8�,
using computer simulations. This study, though, was re-

stricted to one set of values for the hard-core diameter, soft-
core diameter, and attraction range. Subsequently, this work
was extended with more extensive simulations �9�, confirm-
ing previous results, exactly locating the critical point and
comparing its behavior with other shoulder potentials. More
recently, a systematic computational study of this potential
was performed by Gibson and Wilding �20�, varying all the
attraction range, repulsive range, and potential minimum.
They found liquid-liquid separation, accompanied by density
anomalies for all the cases they studied.

In this work, we use perturbation theory to study the re-
lation between the liquid-liquid coexistence, the density
anomaly, and the range of the attractive interaction for a
family of ramp potentials with the functional form intro-
duced by Jagla �8�. As reference system for the perturbation
scheme we take �i� the standard hard-spheres system and �ii�
the repulsive part of the total interaction potential. Note that
for the latter the reference system already presents the den-
sity anomaly, which is absent in the former case �22,24�. The
phase behavior is thus obtained using the variation of the
energy with the density, what depends strongly on the tem-
perature and the interaction potential. We identify two
mechanisms to produce liquid-liquid transition: attraction for
long ranged attractions and compression when the attractive
interaction is shortened. With respect to the density anomaly,
we show that it is related to regions where the temperature
derivative of the density derivative of the energy is negative
and smaller than a certain limit. Short ranged attractive po-
tentials fulfill such a condition, but not long ranged ones.

The paper is organized as follows: in Sec. II the ramp
potential and the methods are described. The results are pre-
sented in Sec. III, where they are also discussed. Finally, we
outline the main conclusions in Sec. IV.

II. MODEL AND METHOD

The ramp potential introduced by Jagla consists of a hard
core of diameter �, a linear soft core, of diameter r1, and a
long range linear attraction, of range r2 �8�. These three parts
are connected to yield a continuous �nondifferentiable� po-
tential:
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We will set �=1, �=1, �=0.31, and r1=1.72. Three different
r2 values have been studied �Fig. 1�: �i� r2=2.8; �ii� r2=3
�this system has been widely studied by computer simula-
tions �8,9��; and �iii� r2=3.2. The main difference between
the potentials lies in the range of the attractive interaction,
while a minor effect is observed in the repulsive part �see
Fig. 1�.

In first order perturbation theory �FOPT� the interaction
potential is split up into two parts: U�r�=U0�r�+U1�r�; the
reference system �U0�r�� plus a small perturbation term
�U1�r��. Up to first order, the density Helmholtz free energy
�i.e., f�	 ,T�=F�	 ,T� /V� in a thermodynamic state is esti-
mated as �27�

f�	,T� = f0�	,T� + 		u1
0, �2�

where f0 is the density free energy of the reference system
and 	u1
0 is the perturbation energy per particle averaged in
the reference ensemble �	u1
0=2
	�g0�r�U1�r�r2dr; here
g0�r� is the radial distribution function of the reference sys-
tem�. Once f�	 ,T� is known, the equation of state stems from

P = − f�	,T� + 	� � f

�	
�

T

. �3�

Usually, the hard-sphere fluid is taken as reference sys-
tem, and the Carnahan-Starling equation of state is used �28�.
The radial distribution function needed to compute the sec-
ond term in Eq. �2� can be obtained from liquid state theory
or computer simulations �27,29�. In this work, we have per-
formed Monte Carlo simulations, as described below, to cal-
culate gHS�r� and thus 	u1
0.

Under this approximation, while the entropy is approxi-
mated by the hard-sphere system, the calculation of the en-
ergy is based on the density modulations around the hard-

core diameter �. However core-softened fluids have two
different typical lengths �1,18,20�. At high temperatures,
where the energetic contributions are negligible, the charac-
teristic distance is indeed the diameter of the particles. How-
ever, at low temperatures the pressure fixes the mean dis-
tance: � for high pressures and r1 at low ones. Because this
fact is not considered within standard FOPT, we propose to
use a different reference system to account for it.

Since strictly repulsive ramp potentials present two typi-
cal distances �24�, we have used the repulsive part of the
interaction potential given in Eq. �1� as the reference system
�see inset in Fig. 1�. This system has been extensively stud-
ied by means of computer simulations �21�, showing density
anomaly. The new density free energy is thus

f�	,T� = frep�	,T� + 		uatr
rep. �4�

Now the attractive energy is computed by the density modu-
lations around � and r1, with the pair distribution function
grep�r� calculated by Monte Carlo simulations. Figure 2 rep-
resents both distribution functions; contrary to gHS�r�, grep�r�
shows the nearest neighbor peak at a distance between � and
r1.

In Eq. �4� the free energy of the reference system is not
known. It can be estimated, nevertheless, using perturbation
theory in the standard way, that is, hard spheres is the refer-
ence system:

frep�	,T� = fHS�	,T� + 		urep
HS. �5�

In this approximation, 	urep
HS still uses the density modu-
lations around �, as given by the hard-spheres system.
Thereby, we have approximated 	urep
�	urep
rep, and hence
the total density free energy is

f�	,T� = fHS�	,T� + 		utotal
rep. �6�

Combining Eqs. �3� and �6�,

P = PHS + 	2�	utotal
rep

�	
. �7�

The pressure contains a volume exclusion term and an ener-
getic contribution: the density derivative of the energy. The
second term takes into account the density modulations
around an average distance separating the particles, which

FIG. 1. �Color online� Ramp potential considered in this work
where �=1, �=1, �=0.31, and r1=1.72 have been fixed: r2=3.2
�black line�, r2=3 �dashed line�, and r2=2.8 �grey line�. Inset: re-
pulsive reference system used in the MFOPT �see below� for r2

=3.

FIG. 2. �Color online� Pair distribution functions at 	=0.35 for
the hard spheres system �black line� and the repulsive part of the
total potential at T=0.2 �grey line�. Note the very different position
of the first neighbors peak. The dashed line indicates r1.
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depends on the thermodynamic state. This modified first or-
der perturbation theory will be termed MFOPT.

To calculate the pair distribution functions, NVT Monte
Carlo simulations with 512 particles were used for both ref-
erence systems. Each simulation comprised 20 000 cycles,
half of them used to compute the pair distribution function.
To evaluate the pressure, simulations at constant temperature
were performed along the densities where the reference sys-
tems do not crystallize �up to 	=0.94 in standard FOPT and
	=0.65 for MFOPT�. Once 	utotal
rep has been obtained, the
isotherm is easily drawn from Eq. �7�.

III. RESULTS

The systems under study present two critical points, one
at low density and moderate temperature and another one at
high density and low temperature. The former separates a
dilute fluid from a dense one, i.e., liquid-gas transition,
whereas in the latter two dense fluids are in coexistence, i.e.,
liquid-liquid coexistence, and will be studied in detail in the
first subsection. In the second one, we will study if the den-
sity anomaly is present for any of the systems, and will ana-
lyze its origin.

A. Liquid-liquid coexistence

Figure 3 shows 	utotal
HS and 	utotal
rep as a function of
density for the three sets of parameters investigated in this
work. Under standard FOPT, 	utotal
HS does not depend on
the temperature since g�r� for hard-sphere fluids is a function

exclusively of the density. On the other hand, MFOPT pro-
duces temperature dependent energy.

For all interaction ranges, at high temperatures the energy
tends to the standard-FOPT result, as the only characteristic
distance of the interaction potential is the hard-core diameter.
At low temperatures, however, the core details, i.e., the re-
pulsive ramp, affects the energy of the system. For low den-
sity values, the particles cannot penetrate into the repulsive
part of the potential, and then, only attractive interactions are
present. Upon increasing the density, at constant temperature,
more pairs of particles come closer than r1, which means that
attractive and repulsive interactions are now involved; both
contributions thus compete at high density and may result in
a nonmonotonous behavior of the energy. Therefore we can
see this phenomenon as an effective variation of the interac-
tion potential which is enough to cause liquid-liquid phase
separation �30�.

As shown Fig. 3, for long range attractions the energy is a
decreasing function of the density, at least in the temperature
range investigated, with two inflexion points. For shorter in-
teraction ranges, on the other hand, the energy presents a
minimum at low temperatures and, again, two inflexion
points. For r2=3.2, the attractive contribution is larger than
the repulsive one for the temperatures studied, resulting in a
continuous decrease of the energy; for shorter interaction
ranges, however, both contributions are comparable produc-
ing the minimum.

Once 	utotal
rep is known, using Eq. �7� the gas-liquid and
liquid-liquid coexistence curves were obtained, see Fig. 4. In
this plot, we also depict the spinodal from standard FOPT.

FIG. 3. �Color online� 	utotal
rep for the three systems studied
�grey lines�: �A� r2=3.2 for T=0.5, 0.21, and 0.15 �from top to
bottom�; �B� r2=3 for T=0.35, 0.15, 0.1, and 0.07 �from top to
bottom� and �C� r2=2.8 for T=0.3, 0.1, 0.08, and 0.06 �from top to
bottom�. 	utotal
HS is represented with black lines. Inset: attractive
and repulsive contributions for r2=2.8 at the hard-sphere limit
�black lines� and T=0.08 �grey lines�.

FIG. 4. �Color online� Binodals �black lines� and spinodals
�grey lines� in the T-	 plane using MFOPT: �A� r2=3.2; �B� r2

=3.0 where crosses are the results from simulations �9�; and �C�
r2=2.8. Open circles: spinodals from FOPT with hard-sphere sys-
tem as reference system �only spinodals are represented for clarity,
since hard-spheres crystallization prevents calculations for the
denser liquids�.
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The liquid-liquid transition is present for all values of r2
under both approximations, arising from the variation of the
effective interaction potential with the density �30�. How-
ever, the critical densities for both transitions are displaced to
larger values in FOPT as compared with MFOPT, since
higher pressure is needed to produce the density modulations
around �. As observed in Fig. 3, at high temperatures both
approximations yield comparable results, but major differ-
ences are observed at low temperatures and high density, i.e.,
in the region where the liquid-liquid transition takes place. In
addition to the theoretical results, the critical points for the
system with r2=3.0 from simulations are included, as esti-
mated by Wilding and Magee �9�. Moderate agreement can
be claimed for MFOPT, whereas the FOPT prediction for the
liquid-liquid transition is completely wrong.

Next, we show the phase diagram in the P-T plane, see
Fig. 5. It can be observed that the critical temperatures, both
the gas-liquid and liquid-liquid ones, decrease as the range of
the interaction is shortened. Interestingly, the critical pres-
sure of the gas-liquid transition decreases slightly with de-
creasing r2, while the pressure for liquid-liquid coexistence
increases strongly. We interpret this phenomenon considering
the energy curves �Fig. 3�. For r2=3.2, the longest interaction
range studied in this work, the liquid-liquid separation is
driven by the energy gained by the denser liquid, since the
energy is always a decreasing function of the density at high
and low temperatures. The situation changes for r2=3 and
r2=2.8; here there exist density regions where the energy is
an increasing function of 	. Therefore the mechanism driving
the transition is not energy but compression, i.e., at high
density the particles try to be far away from each other be-
cause they do not gain energy in getting closer, increasing
the density elsewhere in the system. Now the less dense liq-
uid is favored energetically. Similar trends of the critical pa-
rameters of both transitions were obtained by Skibinsky et
al. with a potential comprised by a repulsive step plus an
attractive square well at longer distances �18�.

The liquid-liquid transition has been discussed previously
with different models. On one hand, such a transition was
studied considering an effective diameter which changes
with the state point ��=��	 ,T�� �18�. In this approximation,
the energy term does not depend on temperature. On the

other hand, the liquid-liquid coexistence was discussed by
the variation of the interaction potential with the density
�30�. Both approximations indeed reproduce the liquid-liquid
coexistence. In contrast, in our approximation the theory
takes into account the modulations around an average dis-
tance between the particles. That distance varies with the
density and temperature, provoking the change of the effec-
tive interaction potential with the density and producing en-
ergy curves which depend on T �see Fig. 3�. It is interesting
to note that in our case, the phenomenology arises from an
energetic description of the system, presenting a clear rela-
tion between the microscopic interactions and the macro-
scopic behavior.

B. Density anomaly

Computer simulations confirmed that the ramp potential
presents a density anomaly for a wide range of parameters
�8,9,20�, including the case r2=3, explicitly studied in Ref.
�9�. The increase of the density with temperature was found
for supercritical temperatures and critical to subcritical pres-
sures �with respect to the liquid-liquid transition�. The stan-
dard FOPT, though, does not find any density anomaly in this
region. However, we indeed find a density anomaly using
MFOPT for r2=2.8 and r2=3, but not for r2=3.2, as shown
in Fig. 6. Note that the thermodynamic anomaly appears in
the region located between gas-liquid and liquid-liquid tran-
sitions �in agreement with the simulations�, but disappears at
supercritical pressures �grey lines in Fig. 6�.

In the following, we address two points arising from these
results: �i� why FOPT cannot predict the density anomaly

FIG. 5. �Color online� P-T projection of the phase diagram of
the ramp potentials studied in this work: r2=3.2 �black lines�; r2

=3.0 �dashed lines�; and r2=2.8 �grey lines�. Black circles represent
critical points: CLG liquid-gas critical points and CLL liquid-liquid
critical points.

FIG. 6. �Color online� Density vs T at fixed pressure �indicated
in each case�: �A� r2=3.2 for P=0.015 �black line� and P=0.05
�grey line�; �B� r2=3 for P=0.12 �black line� and P=0.2 �grey
line�; and �C� r2=2.8 for P=0.2 �black line� and P=0.4 �grey line�.
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and �ii� why the system with r2=3.2 does not have a density
anomaly.

The density anomaly is given by � �V
�T

�
P�0, using Maxwell

relations

� �V

�T
�

P

= − � �S

�P
�

T

= − � �S

�V
�

T
� �V

�P
�

T

� 0. �8�

For stable phases � �V
�P

�
T�0. Thus having a density anomaly

implies

� �S

�V
�

T

= � �P

�T
�

V

� 0. �9�

Applying this condition to Eq. �7�,

� �PHS

�T
�

V

+ 	2 �

�T
� �	utotal
rep

�	
�

T
�

V

� 0. �10�

Note that the first term is strictly positive; i.e., � �PHS

�T
�
V�0.

Thus the second term must be negative and bigger �in abso-
lute value� than the first one. It is now clear why FOPT
cannot produce any density anomaly: 	utotal
HS does not de-
pend on T and thus the second term of the expression above
is zero.

The disappearance of the density anomaly for r2=3.2 can
also be rationalized using this expression. In Fig. 7, the den-
sity derivative of the energy is presented for different tem-
peratures, for the system with r2=3.2 �upper panel� and r2

=2.8 �lower panel�. In both cases, the second term in Eq.
�10� is negative for a range of densities, marked by the ar-
rows. However, the density anomaly does not appear for r2
=3.2 because in this case the energy varies too slowly with
temperature, and its derivative is not large enough to over-
come the hard-sphere contribution. In contrast, the variation

of � �	u


�	
�

T vs T for r2=2.8 �and r2=3.0� is stronger, and the
system presents the density anomaly. Noteworthy is that the
density anomalies appear associated to systems with liquid-
liquid separation driven by compression, since for these sys-
tems the energy depends strongly on T �see Fig. 3�. For r2
=3.2, on the other hand, the system gains energy when the
density is increased what produces a weak dependence of the
energy on temperature.

Therefore the presence of a density anomaly depends on
both r1 and r2, i.e., it is not only set by the repulsive inter-
actions, as was already shown for purely repulsive systems
�24�. When the system is dominated by the attractive inter-
actions, that is, the energy is always a decreasing function of
the density �in our case, the system with r2=3.2�, the system
can possess two critical points but no density anomaly. On
the contrary, the system with a liquid-liquid transition driven
by compression can have a density anomaly, associated to
regions where the energy is an increasing function of the
density.

IV. CONCLUSIONS

We have shown the predictions from perturbation theory
for a family of ramp potentials, using as a reference system
hard spheres and the repulsive part of the total interaction
potential. The latter accounts for the density modulations
around a typical distance which depends on the density and
temperature, and which varies between the soft-core diam-
eter and the hard-core one. The use of this reference system
improves the results of the theory regarding the liquid-liquid
coexistence, and is necessary in order to predict the density
anomaly.

Two different mechanisms of liquid-liquid coexistence
have been found for these potentials: �i� attraction driven,
when the energy is a decreasing function of the density for
all the temperatures �for long ranged attractive interactions�,
and �ii� compression driven, characterized by a region where
the energy increases with the density. The density anomaly
appears linked to regions where the temperature derivative of
the density derivative of the energy is negative and smaller
than a limit. Such a condition is fulfilled when the attractive
part of the interaction has a short enough range.
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FIG. 7. �Color online� Density derivative of the total energy
	utotal
: �A� r2=3.2 for T=0.5 �grey line�, T=0.21 �black line�, and
T=0.15 �dashed line�; and �B� r2=2.8 for T=0.3 �grey line�, T
=0.08 �black line�, and T=0.06 �dashed line�. The arrows indicate

the density regions where � �
�T

� �	u


�	
�

T
�

	�0.
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